
 
SSN TOKEN TECHNICAL DOCUMENTATION 

Version: 1.0.0 

Last Updated: February 25, 2025 

Smart Contract Address: 0x615FB7Debb3d7b229D884e771a9fe5e3AcCe1D1A 

TABLE OF CONTENTS 

1. Introduction 

2. Contract Specifications 

3. Token Functions 

4. Security Features 

5. Integration Guide 

6. Diamond Backing Implementation 

7. Technical FAQs 

8. Support & Contact 

1. INTRODUCTION 

SSN Token is an ERC-20 compliant token on the Ethereum blockchain designed to honor Dr. Sam 

Shafiishuna Nujoma's legacy through blockchain innovation. The token features a fixed supply of 100,000 

tokens, with each token backed by approximately 0.4 carats of certified Namibian diamonds. 

This technical documentation provides developers, exchanges, and technical users with comprehensive 

information about SSN Token's implementation, functionality, and integration methods. 

2. CONTRACT SPECIFICATIONS 

2.1 Basic Information 

Parameter Value 

Token Name SSN Token 

Token Symbol SSN 



 
Parameter Value 

Decimals 6 

Total Supply 100,000 

Contract Address 0x615FB7Debb3d7b229D884e771a9fe5e3AcCe1D1A 

Blockchain Ethereum 

Standard ERC-20 

Compiler Version Solidity 0.8.17 

Optimization Enabled (200 runs) 

2.2 Contract Architecture 

SSN Token implements the standard ERC-20 interface with additional security features: 

// SPDX-License-Identifier: MIT 

pragma solidity ^0.8.17; 

 

import "@openzeppelin/contracts/token/ERC20/ERC20.sol"; 

import "@openzeppelin/contracts/security/ReentrancyGuard.sol"; 

import "@openzeppelin/contracts/access/Ownable.sol"; 

 

contract SSNToken is ERC20, ReentrancyGuard, Ownable { 

    // Contract implementation 

    // See section 3 for detailed function descriptions 

} 

2.3 Code Verification 



 
The contract source code has been verified on Etherscan and can be accessed at: 

https://etherscan.io/address/0x615FB7Debb3d7b229D884e771a9fe5e3AcCe1D1A#code 

3. TOKEN FUNCTIONS 

3.1 Standard ERC-20 Functions 

SSN Token implements all standard ERC-20 functions: 

Function Description 

totalSupply() Returns the total token supply (100,000) 

balanceOf(address account) 
Returns the token balance of the specified 

address 

transfer(address to, uint256 amount) Transfers tokens to the specified address 

allowance(address owner, address spender) Returns the remaining allowance for a spender 

approve(address spender, uint256 amount) 
Approves a spender to withdraw from your 

account 

transferFrom(address from, address to, uint256 

amount) 
Transfers tokens from one address to another 

3.2 Additional Functions 

Function Description 

diamondBackingDetails() Returns information about the diamond backing 

getTokenomicsData() Returns detailed tokenomics information 

3.3 Events 

Event Description 

Transfer(address indexed from, address indexed to, uint256 value) 
Emitted when tokens are 

transferred 

https://etherscan.io/address/0x615FB7Debb3d7b229D884e771a9fe5e3AcCe1D1A#code


 
Event Description 

Approval(address indexed owner, address indexed spender, uint256 

value) 
Emitted when approval is set 

4. SECURITY FEATURES 

4.1 Contract Security 

SSN Token implements multiple security features to ensure the integrity and safety of the token: 

• Reentrancy Protection: Utilizes OpenZeppelin's ReentrancyGuard to prevent reentrancy attacks 

• Integer Overflow Protection: Solidity 0.8.x's built-in overflow checking 

• Access Control: Carefully implemented permission controls using OpenZeppelin's Ownable 

• Fixed Supply: No mint function, ensuring the total supply can never be increased 

• Independent Audit: Contract audited by blockchain security specialists 

4.2 Security Audit Results 

The smart contract has undergone a comprehensive security audit with the following results: 

• Critical Vulnerabilities: None found 

• Major Vulnerabilities: None found 

• Minor Findings: 2 (resolved prior to deployment) 

• Informational Findings: 3 (related to gas optimization) 

Full audit report available upon request for exchanges and partners. 

5. INTEGRATION GUIDE 

5.1 Exchange Integration 

For exchanges looking to list SSN Token, follow these steps: 

1. Contract Verification: Verify the contract at address 

0x615FB7Debb3d7b229D884e771a9fe5e3AcCe1D1A 

2. Token Configuration:  



 
o Name: SSN Token 

o Symbol: SSN 

o Decimals: 6 

o Standard: ERC-20 

3. RPC Configuration: Use standard Ethereum RPC endpoints 

4. Test Transactions: Perform test transfers with small amounts 

5. Implement Standard Endpoints: Use standard ERC-20 endpoints for balance checking and 

transfers 

5.2 Wallet Integration 

SSN Token is compatible with all Ethereum wallets that support the ERC-20 standard. No special 

configuration is required. 

5.3 API Interaction Examples 

Web3.js Example 

javascript 

Copy 

const Web3 = require('web3'); 

const web3 = new Web3('https://mainnet.infura.io/v3/YOUR_INFURA_KEY'); 

 

const ssnTokenABI = [...]; // Full ABI available on Etherscan 

const ssnTokenAddress = '0x615FB7Debb3d7b229D884e771a9fe5e3AcCe1D1A'; 

const ssnToken = new web3.eth.Contract(ssnTokenABI, ssnTokenAddress); 

 

// Get token balance 

async function getBalance(address) { 



 
    const balance = await ssnToken.methods.balanceOf(address).call(); 

    return web3.utils.fromWei(balance, 'ether'); 

} 

 

// Transfer tokens 

async function transferTokens(fromAddress, toAddress, amount, privateKey) { 

    const nonce = await web3.eth.getTransactionCount(fromAddress); 

    const data = ssnToken.methods.transfer(toAddress, web3.utils.toWei(amount, 'ether')).encodeABI(); 

     

    const tx = { 

        from: fromAddress, 

        to: ssnTokenAddress, 

        nonce: nonce, 

        gas: 200000, 

        data: data 

    }; 

     

    const signedTx = await web3.eth.accounts.signTransaction(tx, privateKey); 

    return web3.eth.sendSignedTransaction(signedTx.rawTransaction); 

} 

Ethers.js Example 

javascript 

Copy 



 
const { ethers } = require('ethers'); 

const provider = new 

ethers.providers.JsonRpcProvider('https://mainnet.infura.io/v3/YOUR_INFURA_KEY'); 

 

const ssnTokenABI = [...]; // Full ABI available on Etherscan 

const ssnTokenAddress = '0x615FB7Debb3d7b229D884e771a9fe5e3AcCe1D1A'; 

const ssnToken = new ethers.Contract(ssnTokenAddress, ssnTokenABI, provider); 

 

// Get token balance 

async function getBalance(address) { 

    const balance = await ssnToken.balanceOf(address); 

    return ethers.utils.formatUnits(balance, 6); 

} 

 

// Transfer tokens 

async function transferTokens(toAddress, amount, signer) { 

    const ssnTokenWithSigner = ssnToken.connect(signer); 

    const tx = await ssnTokenWithSigner.transfer(toAddress, ethers.utils.parseUnits(amount, 6)); 

    return tx.wait(); 

} 

6. DIAMOND BACKING IMPLEMENTATION 

6.1 Technical Implementation 

The diamond backing for SSN Token operates through a dual-layer implementation: 

1. Blockchain Layer: Immutable smart contract with fixed supply 



 
2. Physical Layer: 40,000 carats of certified Namibian diamonds stored in secure facilities 

The two layers are connected through: 

• Regular audit processes that verify the diamond backing 

• Published verification reports that confirm the existence and security of the diamonds 

• Digital certification using cryptographic signatures of audit reports 

6.2 Verification Methodology 

The verification process incorporates several technical components: 

• Digital fingerprinting of diamond certification documents 

• Cryptographic signing of verification reports by authorized auditors 

• Secure, timestamped publication of verification results 

• Hash verification of audit documentation 

6.3 Technical Specifications of Diamond Reserve 

Parameter Value 

Total Carats 40,000 

Diamonds Per Token ~0.4 carats 

Quality Assessment VS1-VS2 clarity, D-F color 

Verification Frequency Quarterly 

Verification Methodology Physical inspection + documentation review 

Security Protocol Multi-layer physical and digital security 

7. TECHNICAL FAQS 

7.1 How does SSN Token handle gas fees? 

SSN Token operates as a standard ERC-20 token on the Ethereum network. Users must have ETH in their 

wallet to cover gas fees for transactions. 



 
7.2 Is SSN Token compatible with hardware wallets? 

Yes, SSN Token can be stored on any hardware wallet that supports Ethereum ERC-20 tokens, including 

Ledger, Trezor, and others. 

7.3 Can the total supply be increased? 

No. The smart contract does not include a mint function. The total supply is fixed at 100,000 tokens and 

cannot be increased. 

7.4 How can I verify the token's diamond backing? 

The diamond backing is verified through quarterly audit reports conducted by independent gemological 

experts. These reports are published on the SSN Token website. 

7.5 Is the contract upgradeable? 

No, the SSN Token contract is not upgradeable. This design choice ensures that the core functionality, 

including the fixed supply, cannot be altered. 

7.6 What is the SSN Token's transaction speed? 

As an ERC-20 token on Ethereum, SSN Token transactions are processed at the same speed as the 

Ethereum network, typically within 15 seconds to 5 minutes depending on network congestion and gas 

price. 

8. SUPPORT & CONTACT 

8.1 Technical Support 

For technical inquiries, integration assistance, or smart contract questions: 

• Email: technical@nujoma.biz 

• Telegram: https://t.me/+Hy1ILj-DMmE5ZmI8 

8.2 Documentation Updates 

This technical documentation is versioned and will be updated as needed. Check the website for the 

latest version. 

 

mailto:technical@nujoma.biz
https://t.me/+Hy1ILj-DMmE5ZmI8


 
Disclaimer: This technical documentation is intended for informational purposes only. Developers, 

exchanges, and users should perform their own due diligence before integrating or interacting with the 

SSN Token smart contract. 

Document Version: 1.0.0 (February 25, 2025 


